Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Small ; : e2400513, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545999

RESUMO

Hydrogenated diamond-like carbon (HDLC) is a promising solid lubricant for its superlubricity which can benefit various industrial applications. While HDLC exhibits notable friction reduction in macroscale tests in inert or reducing environmental conditions, ultralow friction is rarely observed at the nanoscale. This study investigates this rather peculiar dependence of HDLC superlubricity on the contact scale. To attain superlubricity, HDLC requires i) removal of ≈2 nm-thick air-oxidized surface layer and ii) shear-induced transformation of amorphous carbon to highly graphitic and hydrogenated structure. The nanoscale wear depth exceeds the typical thickness of the air-oxidized layer, ruling out the possibility of incomplete removal of the air-oxidized layer. Raman analysis of transfer films indicates that shear-induced graphitization readily occurs at shear stresses lower than or comparable to those in the nanoscale test. Thus, the same is expected to occur at the nanoscale test. However, the graphitic transfer films are not detected in ex-situ analyses after nanoscale friction tests, indicating that the graphitic transfer films are pushed out of the nanoscale contact area due to the instability of transfer films within a small contact area. Combining all these observations, this study concludes the retention of highly graphitic transfer films is crucial to achieving HDLC superlubricity.

2.
Sci Rep ; 14(1): 2992, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316829

RESUMO

Mechanical stress can directly activate chemical reactions by reducing the reaction energy barrier. A possible mechanism of such mechanochemical activation is structural deformation of the reactant species. However, the effect of deformation on the reaction energetics is unclear, especially, for shear stress-driven reactions. Here, we investigated shear stress-driven oligomerization reactions of cyclohexene on silica using a combination of reactive molecular dynamics simulations and ball-on-flat tribometer experiments. Both simulations and experiments captured an exponential increase in reaction yield with shear stress. Elemental analysis of ball-on-flat reaction products revealed the presence of oxygen in the polymers, a trend corroborated by the simulations, highlighting the critical role of surface oxygen atoms in oligomerization reactions. Structural analysis of the reacting molecules in simulations indicated the reactants were deformed just before a reaction occurred. Quantitative evidence of shear-induced deformation was established by comparing bond lengths in cyclohexene molecules in equilibrium and prior to reactions. Nudged elastic band calculations showed that the deformation had a small effect on the transition state energy but notably increased the reactant state energy, ultimately leading to a reduction in the energy barrier. Finally, a quantitative relationship was developed between molecular deformation and energy barrier reduction by mechanical stress.

3.
Langmuir ; 40(3): 1658-1665, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38179938

RESUMO

The surface resistivity of boroaluminosilicate display glasses, which may affect the downstream display panel manufacturing, varies with the relative humidity (RH) of the environment, but the origin of this RH dependence has not been well understood. We have measured the water adsorption behavior on Corning Eagle XG (Glass-E) and Lotus NXT (Glass-L) glass panels using Brewster angle transmission infrared spectroscopy. The IR spectra of adsorbed water were analyzed to obtain the effective thickness of adsorbed water, the distribution of hydrogen-bonding interactions among the adsorbed water molecules, and the isosteric heat of water adsorption. These characteristics were compared with the electrical conductivity (inverse of resistivity) of these two glasses [Appl. Surf. Sci. 2015, 356, 1189]. This comparison revealed the correlation between the conductivity and the water layer structure, which could explain the surface resistivity difference between Glass-E and Glass-L as a function of RH. This study also disputed the previous hypothesis that the water adsorption isotherm would be governed by the areal density of the surface hydroxyl group; instead, it suggested that the network modifier ions may also play a critical role, especially in the intermediate RH regime.

4.
Biosensors (Basel) ; 14(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248414

RESUMO

In this study, we developed a multi-walled carbon nanotube (MWCNT)-based field-effect transistor (MWCNT-FET) sensor with high sensitivity and selectivity for microcystin-LR (MC-LR). Carboxylated MWCNTs were activated with an MC-LR-targeting aptamer (MCTA). Subsequently the bioactivated MWCNTs were immobilized between interdigitated drain (D) and source (S) electrodes through self-assembly. The top-gated MWCNT-FET sensor was configured by dropping the sample solution onto the D and S electrodes and immersing a Ag/AgCl electrode in the sample solution as a gate (G) electrode. We believe that the FET sensor's conduction path arises from the interplay between the MCTAs, with the applied gate potential modulating this path. Using standard instruments and a personal computer, the sensor's response was detected in real-time within a 10 min time frame. This label-free FET sensor demonstrated an impressive detection capability for MC-LR in the concentration range of 0.1-0.5 ng/mL, exhibiting a lower detection limit of 0.11 ng/mL. Additionally, the MWCNT-FET sensor displayed consistent reproducibility, a robust selectivity for MC-LR over its congeners, and minimal matrix interferences. Given these attributes, this easily mass-producible FET sensor is a promising tool for rapid, straightforward, and sensitive MC-LR detection in freshwater environments.


Assuntos
Toxinas Marinhas , Microcistinas , Nanotubos de Carbono , Reprodutibilidade dos Testes , Ácidos Carboxílicos , Eletrodos
5.
Sci Rep ; 13(1): 22007, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086837

RESUMO

In plant cells, cellulose synthase complexes (CSCs) are nanoscale machines that synthesize and extrude crystalline cellulose microfibrils (CMFs) into the apoplast where CMFs are assembled with other matrix polymers into specific structures. We report the tissue-specific directionality of CSC movements of the xylem and interfascicular fiber walls of Arabidopsis stems, inferred from the polarity of CMFs determined using vibrational sum frequency generation spectroscopy. CMFs in xylems are deposited in an unidirectionally biased pattern with their alignment axes tilted about 25° off the stem axis, while interfascicular fibers are bidirectional and highly aligned along the longitudinal axis of the stem. These structures are compatible with the design of fiber-reinforced composites for tubular conduit and support pillar, respectively, suggesting that during cell development, CSC movement is regulated to produce wall structures optimized for cell-specific functions.


Assuntos
Arabidopsis , Arabidopsis/química , Microfibrilas/química , Celulose/química , Parede Celular/química
6.
Biomacromolecules ; 24(11): 4759-4770, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704189

RESUMO

Cellulose microfibrils (CMFs) are a major load-bearing component in plant cell walls. Thus, their structures have been studied extensively with spectroscopic and microscopic characterization methods, but the findings from these two approaches were inconsistent, which hampers the mechanistic understanding of cell wall mechanics. Here, we report the regiospecific assembly of CMFs in the periclinal wall of plant epidermal cells. Using sum frequency generation spectroscopic imaging, we found that CMFs are highly aligned in the cell edge region where two cells form a junction, whereas they are mostly isotropic on average throughout the wall thickness in the flat face region of the epidermal cell. This subcellular-level heterogeneity in the CMF alignment provided a new perspective on tissue-level anisotropy in the tensile modulus of cell wall materials. This finding also has resolved a previous contradiction between the spectroscopic and microscopic imaging studies, which paves a foundation for better understanding of the cell wall architecture, especially structure-geometry relationships.


Assuntos
Celulose , Células Vegetais , Celulose/química , Anisotropia , Microfibrilas/química , Parede Celular/química
7.
J Phys Chem B ; 127(39): 8456-8467, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37747822

RESUMO

Vibrational sum frequency generation (SFG) spectroscopy has been extensively used for obtaining structural information of molecular functional groups at two-dimensional (2D) interfaces buried in the gas or liquid medium. Although the SFG experiment can be done elegantly, interpreting the measured intensity in terms of molecular orientation with respect to the lab coordinate is quite complicated. One of the main reasons is the difficulty of determining the hyperpolarizability tensors of even simple molecules that govern their SFG responses. The single-bond polarizability derivative model has been proposed to estimate the relative magnitude of SFG-active hyperpolarizability by assuming that the perturbation associated to each vibration is negligible. In this study, density functional theory was used to calculate the polarizability and dipole derivative tensors of the CH3 stretch mode of CH3I, CH3CH2I, CH3OH, and CH3CH2OH. Then, the hyperpolarizability tensors of symmetric and asymmetric vibration modes were calculated considering the Boltzmann distribution of representative conformers, which allowed us to theoretically calculate their SFG intensities at all polarization combinations as a function of the tilt angle of the CH3 group with respect to the surface normal direction. Then, the ratios of the calculated SFG intensities for the CH3 symmetric and asymmetric stretch peaks used in experimental studies for the CH3 tilt angle determination were compared. This comparison clearly showed that the effect of vibrational coupling among neighboring functional groups is significant and cannot be assumed to be negligible. This study presents new parameters that can be used in determining the average tilt angle of the CH3 group at the 2D interface with SFG measurements as well as limitations of the method.

8.
ACS Appl Mater Interfaces ; 15(31): 37997-38007, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306622

RESUMO

The lubricity of hydrogenated diamond-like carbon (HDLC) films is highly sensitive to the hydrogen (H) content in the film and the oxidizing gas in the environment. The tribochemical knowledge of HDLC films with two different H-contents (mildly hydrogenated vs highly hydrogenated) was deduced from the analysis of the transfer layers formed on the counter-surface during friction tests in O2 and H2O using Raman spectroscopic imaging and X-ray photoelectron spectroscopy (XPS). The results showed that, regardless of H-content in the film, shear-induced graphitization and oxidation take place readily. By analyzing the O2 and H2O partial pressure dependence of friction of HDLC with a Langmuir-type reaction kinetics model, the oxidation probability of the HDLC surface exposed by friction as well as the removal probability of the oxidized species by friction were determined. The HDLC film with more H-content exhibited a lower oxidation probability than the film with less H-content. The atomistic origin of this H-content dependence was investigated using reactive molecular dynamics simulations, which showed that the fraction of undercoordinated carbon species decreased as the H-content in the film increased, corroborating the lower oxidation probability of the highly-hydrogenated film. The H-content in the HDLC film influenced the probabilities of oxidation and material removal, both of which vary with the environmental condition.

9.
Small ; 19(37): e2301515, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37162454

RESUMO

Two-dimensional (2D) lamellar materials are normally capable of rendering super-low friction, wear protection, and adhesion reduction in nanoscale due to their ultralow shear strength between two basal plane surfaces. However, high friction at step edges prevents the 2D materials from achieving super-low friction in macroscale applications and eventually leads to failure of lubrication performance. Here, taking graphene as an example, the authors report that not all step edges are detrimental. The armchair (AC) step edges are found to have only a minor topographic effect on friction, while the zigzag (ZZ) edges cause friction two orders of magnitude larger than the basal plane. The AC step edge is less reactive and thus more durable. However, the ZZ structure prevails when step edges are produced mechanically, for example, through mechanical exfoliation or grinding of graphite. The authors found a way to make the high-friction ZZ edge superlubricious by reconstructing the (6,6) hexagon structure to the (5,7) azulene-like structure through thermal annealing in an inert gas environment. This will facilitate the realization of graphene-based superlubricity over a wide range of industrial applications in which avoiding the involvement of step edges is difficult.

10.
Carbohydr Polym ; 314: 120959, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173053

RESUMO

Cellulose, the major component of secondary cell walls, is the most abundant renewable long-chain polymer on earth. Nanocellulose has become a prominent nano-reinforcement agent for polymer matrices in various industries. We report the generation of transgenic hybrid poplar overexpressing the Arabidopsis gibberellin 20-oxidase1 gene driven by a xylem-specific promoter to increase gibberellin (GA) biosynthesis in wood. X-ray diffraction (XRD) and sum frequency generation spectroscopic (SFG) analyses showed that cellulose in transgenic trees was less crystalline, but the crystal size was larger. The nanocellulose fibrils prepared from transgenic wood had an increased size compared to those from wild type. When such fibrils were used as a reinforcing agent in sheet paper preparation, the mechanical strength of the paper was significantly enhanced. Engineering the GA pathway can therefore affect nanocellulose properties, providing a new strategy for expanding nanocellulose applications.


Assuntos
Arabidopsis , Populus , Giberelinas , Xilema/genética , Xilema/metabolismo , Oxigenases de Função Mista/metabolismo , Madeira/metabolismo , Celulose/química , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo
11.
Faraday Discuss ; 241(0): 194-205, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134558

RESUMO

Mechanochemical activation has created new opportunities for applications such as solvent-free chemical synthesis, polymer processing, and lubrication. However, mechanistic understanding of these processes is still limited because the mechanochemical response of a system is a complex function of many variables, including the direction of applied stress and the chemical features of the reactants in non-equilibrium conditions. Here, we studied shear-activated reactions of simple cyclic organic molecules to isolate the effect of chemical structure on reaction yield and pathway. Reactive molecular dynamics simulations were used to model methylcyclopentane, cyclohexane, and cyclohexene subject to pressure and shear stress between silica surfaces. Cyclohexene was found to be more susceptible to mechanochemical activation of oxidative chemisorption and subsequent oligomerization reactions than either methylcyclopentane or cyclohexane. The oligomerization trend was consistent with shear-driven polymerization yield measured in ball-on-flat sliding experiments. Analysis of the simulations showed the distribution of carbon atom sites at which oxidative chemisorption occurred and identified the double bond in cyclohexene as being the origin of its shear susceptibility. Lastly, the most common reaction pathways for association were identified, providing insight into how the chemical structures of the precursor molecules determined their response to mechanochemical activation.

12.
Langmuir ; 38(48): 14704-14711, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36394829

RESUMO

Surface-tethered macromolecules (polymer brushes) are a potent means to modify surfaces with stimuli-responsive properties while avoiding delamination problems. This vibrational sum frequency generation spectroscopy study describes how the conformation of hydrophilic polymer brushes changes in response to environmental conditions, that is, changes in humidity (in air) and upon exposure to liquid water. Three hydrophilic brushes were prepared on silicon oxide surfaces by surface-initiated reversible deactivation radical polymerization of cationic (quaternary ammonium), anionic (sulfonate), and zwitterionic (containing both) monomers. The average tilt angle of methyl groups was analyzed and used to deduce the chain conformations of the polymer brushes. In air, the brush films absorb water and swell with increasing humidity. This is accompanied by the rotation of interfacial polymer chains. The degree of water uptake and chain conformation vary with the nature of the charged hydrophilic moieties. The hydrophilic polymer brush surfaces appear to remain relatively dry except in near-condensation conditions. In water, the quaternary ammonium groups of cationic and zwitterionic brushes are aligned nearly parallel to the surface. The anionic brush chains appear to assume nearly random conformations in water.

13.
J Phys Chem B ; 126(35): 6629-6641, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36037433

RESUMO

Vibrational sum frequency generation (SFG) spectroscopy can specifically probe molecular species non-centrosymmetrically arranged in a centrosymmetric or isotropic medium. This capability has been extensively utilized to detect and study molecular species present at the two-dimensional (2D) interface at which the centrosymmetry or isotropy of bulk phases is naturally broken. The same principle has been demonstrated to be very effective for the selective detection of non-centrosymmetric crystalline nanodomains interspersed in three-dimensional (3D) amorphous phases. However, the full spectral interpretation of SFG features has been difficult due to the complexity associated with the theoretical calculation of SFG responses of such 3D systems. This paper describes a numerical method to predict the relative SFG intensities of non-centrosymmetric nanodomains in 3D systems as functions of their size and concentration as well as their assembly patterns, i.e., the distributions of tilt, azimuth, and rotation angles with respect to the lab coordinate. We applied the developed method to predict changes in the CH and OH stretch modes characteristic to crystalline cellulose microfibrils distributed with various orders, which are relevant to plant cell wall structures. The same algorithm can also be applied to any SFG-active nanodomains interspersed in 3D amorphous matrices.


Assuntos
Parede Celular , Celulose , Membrana Celular , Parede Celular/química , Celulose/química , Análise Espectral/métodos , Vibração
14.
Front Chem ; 10: 925015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734445
15.
Nano Lett ; 22(14): 6018-6025, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35695465

RESUMO

Atomically thin two-dimensional (2D) materials are excellent candidates for utilization as a solid lubricant or additive at all length scales from macro-scale mechanical devices to micro/nano-electromechanical systems (MEMS/NEMS). In such applications, wear resistance of ultrathin 2D materials is critical for sustained lubrication performance. Here, we investigated the wear of fluorinated graphene (FG) nanosheets deposited on silicon surfaces using atomic force microscopy (AFM) and discovered that the wear resistance of FG improves as the FG thickness decreases from 4.2 to 0.8 nm (corresponding to seven layers to single layer) and the surface energy of the substrate underneath the FG nanosheets increases. On the basis of density function theory (DFT) calculations, the negative correlation of wear resistance to FG thickness and the positive correlation to substrate surface energy could be explained with the degree of interfacial charge transfer between FG and substrate which affects the strength of FG adhesion to the substrate.

16.
Chem Rev ; 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35511603

RESUMO

Atomic structure dictates the performance of all materials systems; the characteristic of disordered materials is the significance of spatial and temporal fluctuations on composition-structure-property-performance relationships. Glass has a disordered atomic arrangement, which induces localized distributions in physical properties that are conventionally defined by average values. Quantifying these statistical distributions (including variances, fluctuations, and heterogeneities) is necessary to describe the complexity of glass-forming systems. Only recently have rigorous theories been developed to predict heterogeneities to manipulate and optimize glass properties. This article provides a comprehensive review of experimental, computational, and theoretical approaches to characterize and demonstrate the effects of short-, medium-, and long-range statistical fluctuations on physical properties (e.g., thermodynamic, kinetic, mechanical, and optical) and processes (e.g., relaxation, crystallization, and phase separation), focusing primarily on commercially relevant oxide glasses. Rigorous investigations of fluctuations enable researchers to improve the fundamental understanding of the chemistry and physics governing glass-forming systems and optimize structure-property-performance relationships for next-generation technological applications of glass, including damage-resistant electronic displays, safer pharmaceutical vials to store and transport vaccines, and lower-attenuation fiber optics. We invite the reader to join us in exploring what can be discovered by going beyond the average.

17.
Anal Chem ; 94(13): 5231-5239, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312271

RESUMO

Photothermal atomic force microscopy coupled with infrared spectroscopy (AFM-IR) brings significant value as a spatially resolved surface analysis technique for disordered oxide materials such as glasses, but additional development and fundamental understanding of governing principles is needed to interpret AFM-IR spectra, since the existing theory described for organic materials does not work for materials with high extinction coefficients for infrared (IR) absorption. This paper describes theoretical calculation of a transient temperature profile inside the IR-absorbing material considering IR refraction at the interface as well as IR adsorption and heat transfer inside the sample. This calculation explains the differences in peak positions and amplitudes of AFM-IR spectra from those of specular reflectance and extinction coefficient spectra. It also addresses the information depth of the AFM-IR characterization of bulk materials. AFM-IR applied to silica and silicate glass surfaces has demonstrated novel capability of characterizing subsurface structural changes and surface heterogeneity due to mechanical stresses from physical contacts, as well as chemical alterations manifested in surface layers through aqueous corrosion.

19.
J Phys Chem B ; 125(44): 12365-12377, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726409

RESUMO

Vanadium-containing glasses have aroused interest in several fields such as electrodes for energy storage, semiconducting glasses, and nuclear waste disposal. The addition of V2O5, even in small amounts, can greatly alter the physical properties and chemical durability of glasses; however, the structural role of vanadium in these multicomponent glasses and the structural origins of these property changes are still poorly understood. We present a comprehensive study that integrates advanced characterizations and atomistic simulations to understand the composition-structure-property relationships of a series of vanadium-containing aluminoborosilicate glasses. UV-vis spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption near-edge structure (XANES) have been used to investigate the complex distribution of vanadium oxidation states as a function of composition in a series of six-component aluminoborosilicate glasses. High-energy X-ray diffraction and molecular dynamics simulations were performed to extract the detailed short- and medium-range atomistic structural information such as bond distance, coordination number, bond angle, and network connectivity, based on recently developed vanadium potential parameters. It was found that vanadium mainly exists in two oxidation states: V5+ and V4+, with the former being dominant (∼80% from XANES) in most compositions. V5+ ions were found to exist in 4-, 5-, and 6-fold coordination, while V4+ ions were mainly in 4-fold coordination. The percentage of 4-fold-coordinated boron and network connectivity initially increased with increasing V2O5 up to around 5 mol % but then decreased with higher V2O5 contents. The structural role of vanadium and the effect on glass structure and properties are discussed, providing insights into future studies of sophisticated structural descriptors to predict glass properties from composition and/or structure and aiding the formulation of borosilicate glasses for nuclear waste disposal and other applications.

20.
ACS Appl Mater Interfaces ; 13(42): 50470-50480, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643085

RESUMO

Aqueous corrosion of glass may result in the formation of an alteration layer in the glass surface of which chemical composition and network structure are different from those of the bulk glass. Since corrosion occurs far below the glass-transition temperature, the alteration layer cannot fully relax to the new structure with the lowest possible energy. Molecular dynamics simulations suggested that such a network will contain highly strained chemical bonds, which can be manifested as a stress in the alteration layer. Common techniques to measure stress in thin films or surface layers were found inadequate for thick monolithic glass samples corroded in water. Here, we explored the use of spectroscopic ellipsometry to test the presence of internal stress in the alteration layer formed by aqueous corrosion of glass. A procedure for analyses of spectroscopic ellipsometry data to determine birefringence in the alteration layer was developed. Findings with the established fitting procedure suggested that a stress builds up in the corroded surface layer of a boroaluminosilicate glass if there is a change in relative humidity, pH, or electrolyte concentration of the environment to which the glass surface is exposed. A similar process may occur in other types of glass, and it may affect the surface properties of corroded glass objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...